compound exposure. The number of cells remaining after 48 hours was compared to the number of viable cells at the time of drug addition, allowing for calculation of growth inhibition.

[0561] The growth over 48 hours of cells in control wells that had been treated with vehicle only (0.25% DMSO) is considered 100% growth and the growth of cells in wells with compounds is compared to this.

[0562] A $\rm Gi_{50}$ was calculated by plotting the concentration of compound in μM vs the percentage of cell growth in treated wells. The $\rm Gi_{50}$ calculated for the compounds is the estimated concentration at which growth is inhibited by 50% compared to control, i.e. the concentration at which:

$$100 \times [(\mathrm{Treated_{48}} - T_0)/(\mathrm{Control_{48}} - T_0)] = 50$$

wherein Treated₄₈ is the value at 48 hours for the treated cells and Control₄₈ is the value at 48 hours for the control population.

[0563] All concentrations of compounds are tested in duplicate and controls are averaged over 12 wells. A very similar 96-well plate layout and Gi_{50} calculation scheme is used by the National Cancer Institute (see Monks, et al., J. Natl. Cancer Inst. 83:757-766 (1991)). However, the method by which the National Cancer Institute quantitates cell number does not use MTS, but instead employs alternative methods. [0564] Compounds of Examples 1-13 above inhibited cell proliferation in human ovarian tumor cell lines (SKOV-3).

Example 26

Calculation of IC₅₀

[0565] Measurement of a compound's IC₅₀ for KSP activity uses an ATPase assay. The following solutions are used: Solution 1 consists of 3 mM phosphoenolpyruvate potassium salt (Sigma P-7127), 2 mM ATP (Sigma A-3377), 1 mM IDTT (Sigma D-9779), 5 µM paclitaxel (Sigma T-7402), 10 ppm antifoam 289 (Sigma A-8436), 25 mM Pipes/KOH pH 6.8 (Sigma P6757), 2 mM MgC12 (VWR JT400301), and 1 mM EGTA (Sigma E3889). Solution 2 consists of 1 mM NADH (Sigma N8129), 0.2 mg/ml BSA (Sigma A7906), pyruvate kinase 7 U/ml, L-lactate dehydrogenase 10 U/ml (Sigma P0294), 100 nM KSP motor domain, 50 µg/ml microtubules, 1 mM DTT (Sigma D9779), 5 µM paclitaxel (Sigma T-7402), 10 ppm antifoam 289 (Sigma A-8436), 25 mM Pipes/KOH pH 6.8 (Sigma P6757), 2 mM MgC12 (VWR JT4003-01), and 1 mM EGTA (Sigma E3889). Serial dilutions (8-12 two-fold dilutions) of the compound are made in a 96-well microtiter plate (Corning Costar 3695) using Solution 1. Following serial dilution each well has 50 µl of Solution 1. The reaction is started by adding 50 µl of solution 2 to each well. This may be done with a multichannel pipettor either manually or with automated liquid handling devices. The microtiter plate is then transferred to a microplate absorbance reader and multiple absorbance readings at 340 nm are taken for each well in a kinetic mode. The observed rate of change, which is proportional to the ATPase rate, is then plotted as a function of the compound concentration. For a standard IC₅₀ determination the data acquired is lit by the following four parameter equation using a nonlinear fitting program (e.g., Grafit 4):

$$y = \frac{\text{Range}}{1 + \left(\frac{x}{IC_{50}}\right)^s + \text{Background}}$$

where y is the observed rate and x is the compound concentration.

What is claimed is:

1. A compound having the structure:

$$\begin{array}{c|c} R_1 & & \\ \hline R_2' & & \\ \hline R_{12} & & R_8 \end{array}$$

wherein:

- R₁ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-;
- R₂ and R₂ are independently chosen from hydrogen, optionally substituted alkyl-, optionally substituted alkoxy, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl; or R₂ and R₂ taken together form an optionally substituted 3- to 7-membered ring;
- R_{12} is selected from the group consisting of optionally substituted imidazolyl, optionally substituted imidazolinyl, —NHR₄; —N(R₄)(COR₃); —N(R₄)(SO₂R_{3a}); and —N(R₄)(CH₂R_{3b});
- R₃ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, R₁₅O— and R₁₇—NH—;
- R_{3a} is chosen from optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, and R_{17} —NH—;
- R_{3b} is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl;
- R₄ is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted hetercyclyl-, and optionally substituted heteroaralkyl-;
- R₅, R₆, R₇ and R₈ are independently chosen from hydrogen, acyl, optionally substituted alkyl-, optionally substituted alkoxy, halogen, hydroxyl, nitro, cyano, dialkylamino, alkylsulfonyl-, alkylsulfonamido-, alkylthio-, carboxyalkyl-, carboxamido-, aminocarbonyl-, optionally substituted aryl and optionally substituted heteroaryl; and
- $\rm R_{15}$ is chosen from optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, and optionally substituted heteroaralkyl-,
- R₁₇ is hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, or optionally substituted heteroaralkyl-, including single stereoisomers, mixtures of stereoisomers;
- a pharmaceutically acceptable salt of a compound of Formula I;
- a pharmaceutically acceptable solvate of a pharmaceutically acceptable solvate of a compound of Formula I;